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Questions of the correctness of the formulation are considered for problems 
of controlling heat and mass transfer. The possibility of decisive choice 
of a control from a given class is elucidated. The efficiency of the regu- 
larizing operator for solving the problem is confirmed by mathematical ex- 
periments on a computer. 

The effectiveness of the mathematical-modeling method for solving problems of the con- 
trol of technological processes within the framework of a general variational formulation 
is well known [1-3]. In this formulation, the desired quantity is some controlling func- 
tional parameter (cause) ensuring a control result which is specified in advance (effect), 
and hence problems of this type belong to the class of inverse problems. This entails spe- 
cial attention to questions of the correctness of their formulation, and often this prob- 
lem is solved at the algorithmic level using particular regularizing algorithms [4-6]. 

In the presentw~fk, on the basis of these concepts, some problems associated with non- 
linear processes of high-temperature chemicotherma! treatment of the samples in gas far- 
naces are discussed. Considering the problems of cementation and heating for subsequent 
treatment, in each case only one of these problems is mentioned, because of their mathema- 
tical similarity. 

i. The cementation of steel samples, usually within the framework of a spatially one- 
dimensional model, is described by the conditions 

o (D(.) o.) 
o, =-g- '  

D (u) 8u f I = 0 ,  uj~=o = uo - -  const, = ~ (u) ( .  - w (O)l~=o, D ( . )  -gfxc~u I ' ( 1 ) 
x~O X~l  

where u = u(x, t) is the carbon concentration in the sample material; u 0 is the initi.~l con- 
centration, corresponding to the grade of steel; D(u) is the diffusion coefficient; $1u) is 
the thermokinetic coefficient, characterizing the mass transfer at the sample boundarT; w(t) 
is the carbon potential of the furnace, regarded as a function of the time. 

The problem of interest here is to choose w(t), for known D(u), ~(u), and u0, sucll that 
the required cementation profile ~(x) is obtained at time t: 

~(x, 7)- ~(x) (2) 

Noting that the control class w(t)eW, where W is some metric space, it is chosen :n ac- 
cordance with a priori information on the influence of particular controlling function,s on 
the result. Here the behavior of u(x, t) is determined by the problem in Eq. (i): u(~:, t)e 
AW, where A is a nonlinear operator implicitly specified by the conditions in Eq. (i). Since 
the resulting profile is also specified by those conditions, the two following possibilities 
exist: 

a) $ is the profile actually achievable with the given W:$~AW; then the problem Js 
equivalent to the operator equation 

Am=% wEW, ~=  ~E~, (3) 
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Fig. i. Types of control: a) step; b) continuous. 

Fig. 2. Model of constant (over time) control: i) specified; 2) 
initial approximation; 3)^solution of the problem when e = 10-6; 
T = 930~ u 0 = 0.15% C; t = 30 h. 

where @ is a metric space coinciding in this case with AW; 

b) $ is only the desirable cementation profile, but is unachievable with W: Se-AW; then 
Eq. (3) has no solution, and hence the formulation is incorrect. 

In the latter case, only some approximation to the desirable result may be expected, 
and it is natural to call the solution of the following variational problem the optimal ap- 
proximat ion 

= arg in[p~(Aw, ~), (4) 
W 

which i s  known to  e x i s t  in  view of  the  c o n t i n u i t y  of  A.* The q u a n t i t y  6 = p@(Aw, r here  
g ives  the  s m a l l e s t  p o s s i b l e  (on W) d e v i a t i o n  of  the  op t imal  p r o f i l e  from the  d e s i r a b l e  pro-  
file. This means that, with 6 specified in advance (6 < 6), the problem of choosing w from 
the condition p#(Aw, ~) < 6 is also found to be incorrectly formulated, since its solution 
with W is nonexistent, and in this case it appears that the formulation is not valid [i]. 

Note that, within the framework of any stable algorithm, the solution in Eq. (4)^may be 
interpreted as the solution of Eq. (3) when ~ = $, where ~= arg inf p@(~, $) = HPAW~ [7]. 

AW 
Therefore, the problem of the uniqueness of the solution of Eq. (3) with the specified #cAW 
is of equal interest in both cases. Its positive solution is not only of theoretical impor- 
tance with respect to the correctness of formulation of the problem in Eq. (3) [i], but also 
raises the question of the choice of w from W, one of which may be "more convenient" than 
another, for example, for technical reasons. 

2. Analysis of the uniqueness is now undertaken for a formulation of the problem some- 
what different from Eq. (3). Specifically, the initial data of the control problem are taken 
to be the concentration field {U}c in a time band that is as narrow as desired Qe - {(x, t): 
0 < x < s t - g < t < t}. 

The requirement of analyticity of the functions ~(u), D(u) when ue[u 0, u m] where u m = 
max u(x, t), and also of w(t) when te[0, t], is called condition (c~). Note that, for D(u) 

and $(u), this condition does not limit the class of real models too much. 

LE~4A. With the condition (~), the specified {u}, with a fixed e > 0 that is as small 
as desired, corresponds to the unique function ~(t) = u(0, t), the boundary conditions of 
concentration variation over time when te[O, t]. 

In fact, with condition (~), the unique solution of Eq. (i) is an analytic function [8], 
and hence u(0, t) is analytic when te[0, t]. At the same time, for VE > 0, the specified 
~(t) - u(0, t) when te[t - g, t] is also analytic. It has the unique analytic continuation 
~(t) (for example, over the complex plane z = t + io [9]) on the segment [0, t], which proves 
the above assertion. 

* The formulation in Eq. (4) is also necessary for problems of interpretation (discrimination) 
[!], when the right-hand side of the corresponding Eq. (3) is burdened with errors, so that 
r 
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The conditions on the coefficients of Eq. (i) are refined by requirement ($): D(~), ~(u) 

> 0 when ue[u0, Um]" 

The condition that u(O, t) = u(t) with known u(t) is considered as an addition tc Eq. (I). 
It may be expected that this set of conditions uniquely determines a pair of functions: (u(x, 
t), w(t)); this is equivalent to unique solution of the problem: H(t) + w(t). In fact, the 

following theorem holds. 

THEOREM. With conditions (~) and (~), the specified H(t) corresponds to a unique control- 
^ 

ling function w(t), te[O, t]. 

This theorem is proved by the method of integral identities proposed for an analogous 
purpose in [i0]. 

For any @(x, t)eC2"i(QT), QT - {(x, t): 0 < x < s 0 < t < T}, at any ~: 0 < ~ < t, the 

following identity holds 

(5) O, 

U 

where b = b(u) = [ D(s)ds, so that b x = D(u)u x. 

U 0 

Suppose that there are two pairs of functions (Us(X, t), Ws(t)), s = !, 2 satisfyfng the 
conditions in Eq. (I) and the additional boundary condition. Then, integration by pa:ts, 
taking account of the conditions in Eq. (i), leads, after simple identity transformations, to 
the result 

o = :. (u~, ~:~) - L (u~, v,~) = - -  . i { ( b ~  - -  b.,~) ~I~=o + (b~ - -  bO ~ f~=~}  d t  - -  

0 

l 

�9 o ~- 

where p = (b m - b2)/(u L - u 2) when u I ~ u 2 and p = D(u2)/u 2 when u I = u s, p > O. Next S is 
chosen from the conditions St + PCxx = O, (x, t)eQT; Sx(Z, t) = O; S(O, t) = x(t) > Otx(t)$~ 
o ) ,  S ( x ,  ~)= o.  

As shown in [8, i0], the solution of this problem exists for any continuous X. Then, 
the preceding identity may be written in the form 

T T T 

o = I ( D  ( ~ )  u i ~ -  D (~2) ~L } i~=oz  (t) dt = I (~  (~ ) (~  - ~0~) - ~ ( ~ ) ( ~ -  ~:~)} z~t ~ j ~ (t) z (t) dr. 
% o 

Hence, since T and • are arbitrary, it follows that ~(t) = 0 almost everywhere in [0, t], 
and then, with condition (a), K(t) - 0 and hence $ (u(t)) (w2(t) - w i(t)) -= O. Since ~(u) is 
positive, it follows that: w2(t) = wi(t), which proves the theorem. 

COROLLARY. With conditions (a) and (~), for any fixed s > 0 that is as small as desired, 
the given {u}E corresponds to a unique function w(t). 

Note that, in order to prove the preceding theorem, it is sufficient to require, instead 
of (a), that 

D(u) E C:[u0, umJ. ~(u) CC ~ u~], ~(0EC :0, 

At t he  same t ime ,  i t  i s  obvious  t h a t ,  wi th  ana logous  c o n d i t i o n s  r e g a r d i n g  t he  t he rma l  zon- 
d u c t i v i t y  k(u)  and volume s p e c i f i c  hea t  c ( u ) ,  t he  r e s u l t s  t r a n s f e r  to  the  c o r r e s p o n d i n ~  prob-  
lem of  c o n t r o l l i n g  h e a t i n g .  

Of c o u r s e ,  t he  above a n a l y s i s  does no t  g ive  an e x h a u s t i v e  s o l u t i o n  of  t he  un iqueness  
problem,  but  the  r e s u l t  e s t a b l i s h e d  g ive s  an idea  of  the  p o s s i b i l i t y  o f  ob ta in•  a unique  
s o l u t i o n  of  t he  problem which i s  of  i n t e r e s t  h e r e ,  where the  i n i t i a l  i n f o r m a t i o n  i s  t he  dep th  
o f  the  c e me n ta t i on  p r o f i l e .  This  p e r m i t s  p r a c t i c a l  c o n f i d e n c e  t h a t ,  in the  case  o f  un ique  
~PAW ~ ( t h e  g e n e r a l  c o n d i t i o n s  f o r  which were s t u d i e d  in [7] f o r  i n t e r p r e t a t i o n  p r o b l e n s ) ,  
any s t a b l e  a l g o r i t h m  f o r  s o l v i n g  Eq. (4)  l eads  to  the  same r e s u l t .  
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Fig. 3, Model of step (a) and continuous (b) controls: i) 
specified; 2) initial approximation; solution of the prob- 
lem with inaccurate data: 3) 6 = i0 -a, ~ = 10-4; 4) 6 = 
10 -2 , ~ = 10-4; 5) 6 = 10 -I , ~ = I0 -= (a), i0 -a (b). T = 
930~ u 0 = 0.15% C, t = 30 h. 

3. The stability of the problem in Eq. (4) is understood in the sense of convergence 
of any minimizing sequence {Wn} [I] in the metric of some enveloping space W ~ W. This 
problem may be unstable since small variation in Aw in the set ~ may correspond to variation 
w(t) that is as large as is desired, generally speaking. Nevertheless, a regularized mini- 
mizing sequence {Wn} may be constructed, on the basis of the assumptions that: a) the set 
W introduced a priori is a compact in W; and b) it is algorithmically ensured that {Wn} be- 
longs to this compact. The latter requirement is conveniently realized using a "stabilizer" 
[i] ~(w), the construction of which depends on the choice of the compact W. 

In [ii, 12], a step control and a continuous control with one element were considered 
(Fig. i) as an alternative to specifying a constant level of the carbon potential. This is 
equivalent to parameterizing the function w(t) and replacing it by a set of a small number 
of parameters p = {Pl,-.',Pn}" In this case W ~ Rn, and the compactness of W is achieved 
by specifying a stabilizer of the form 

n 

= I1 - = - ( 6 )  
~ 1  

o 

where w is a specified vector; qi are specified constants (qi > 0). 

Continuous control w = w(t) of sufficiently arbitrary profile gives broader possibilities. 
In this case, W ~ C[0, t], and the compactness of W is achieved by introducing a stabilizer 

7 
(w) ~ 2 ~ , IlwilcEo,~ = [q,w ( t ) 2 +  q2w(t) 2] dr, ( 7 )  

0 

where qz and q2 are specified constants. 

In both cases, the minimizing sequence may be constructed from extremals of the "smooth- 
ing" functional 

F (z) = v~ (A~, ~) + ~ (~), (8)  

considered in a sequence {an} which converges to zero. 

In the case where an estimate 6 of the tolerance for deviation of the approximation of 
the metric ~ is known in advance - p~(Aw, $) J 6 - and where the problem of choosing w from 
a set defined by this mixed inequality is correct, this inequality may be used to interrupt 
the sequence of extremals w n ~ wan according to the condition 

rain I9~ (Aw~n, ~) - -  6~[. ( 9 )  
n 

This condition, corresponding to the discrepancy principle in interpretation problems [i], 
allows the approximation to the extremal to be chosen in the given case. 
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Fig. 4. Concentration profile with model step control, corresponding 
to curve 4 in Fig. 3a; T = 930~ u 0 = 0.5% C, t = 30 h. x, mm. 

Fig. 5. Concentration profiles: l) specified a priori; 2) correspond- 
ing to continuous control; 3) "exponential"; T = 930~ u 0 = 0.30% C, 
tl = 5 h, t~ = 7.5 h, f = 10 h. 

The realization of the given algorithm in computer programs includes the following ele- 
ments: a) minimization of the functional in Eq~ (8) for each ~n by the method of "formal 
search," analogous to the method of coordinate descent [13]; b) repeated solution of the 
boundary problem in Eq. (i) within the framework of the given minimization algorithm, using 
an iteration -difference procedure similar to:that in [14], with an accuracy 0(Ax 2 + ~t) 
[15]. 

4. Mathematical experiments have been conducted for the cementation problem with the 
following physical parameters 

D (u) = (0,04 -F 0,08u) exp ( - -31350/1 ,987Th)  fcm2/sec) ,  

(u) = 1 ,36 .10-aexp  ( - -11100 /1 ,987 .Th)  (cm/see) [12], 

Th=T+273,15, I =  10 ram, A x =  . . . . .  1 t, A t =  1 ~. 
25 40 

A. The question of the effectiveness of controlling the cementation by choosing ~ cons~ 
tant (over time) level w of the atmospheric carbon potential is resolved by the follo,r 
experiment. 

The range WE[0.9; 1.21% C] is considered, and the controlling parameters also include 
the temperature Tel910; 930~ and the cementation time te[30; i00 hi. The numerical char- 
acteristics $(x) are chosen as follows: $(x) = {Usur, hbo, htot}, where Usur = u(0, ti, hbo 
and hto t correspond to the depth of the layer (from the surface) with concentration Ubo = 
0.8% C and Ubo = u 0 + 0.05% C (at t = t), respectively. 

Finally, an analog of the functional of the problem in Eq. (4) is introduced 

3 
^ s 

~ = ~ (f, (p)/$0~, f, (p) - usur(p)- u u e f~ (p) = h (%o, p)- %0' 

^ 

/a(P) = h(Utot , p)-- hto t 

Since in this case the problem reduces to minimizing a function of three variables, tLe prob- 
lem is stable. Direct approximate estimation of its solution by the "formal-search" n~ethod 
leads to the following values of the characteristics of the cementation profile and tle cor- 
responding controls 

w~_ 1 ,2 1% C ,  T---~910~ " t - -~30h ;  

Usur__~ 1,02% C, hbo ~ 0,14 ~ , h t o t ~ - - 2 , 0 5  mm . 

Experiment shows that, within the framework of the given algorithm, optimal values may 
be obtained within limits specified in advance. Note that, if a less sharp drop in ccncen- 
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Fig. 6 Control corresponding 
to concentration profile in 
curve 2 (i) and 3 (2) in Fig. 
5. 

tration with depth (hbo >> 0.i mm) is of interest, the character of the control w(t) must 
be changed. 

B. The next experiment concerns verification of the effectiveness of the algorithm here 
developed on well-known models. In this case, from the specified controlling function w(t), 
the "final" cementation profile $(x) = u(x, t) is determined by solving Eq. (i), and then 
the inverse problem is solved using Eqs. (8) and (9). 

Since $(x)eAW in this experiment, 6 is determined solely by the errors of the computa- 
tional scheme (relative error ~10-s), so that the algorithm operates essentially as for the 
problem of interpreting initial data that are close to the accurate data. To simulate spe- 
cification of $(x) outside the limits AW, perturbations at different levels are introduced, 
according to the formula 

N 

f=l 

where $ie[-l, i], 6 = i0 -s, 10 -2 , i0 -I. 

The following control models are considered: w constant over time; w(t) piecewise cons- 
tant; and w(t) continuous and piecewise smooth. The parameters of these functions are shown 
in Figsl 2-6. 

The results of solving the inverse problem are shown in Figs. 2 and 3 in comparison with 
those specified by the models, and the concentration profile corresponding to Fig. 3a is 
shown in Fig. 4. 

On the basis of these results, the error in specifying the carbon potential required in 
order for the tolerance in the concentration distribution with depth to fall within speci- 
fied limits may be determined. For example, the error i-2% in Fig. 3a corresponds to a tole- 
rance of i0 -= (6 < i0-=). 

C. Finally, consider the result of searching for a control ensuring the profile speci- 
fied in advance in Fig. 5 (curve i). Searching for the solution w(t) in a set of continuous 
functions, even for a small number of points (n = 5), leads to the result in Fig. 6 (curve i), 
corresponding to curve 2 in Fig. 5. 

Also in Figs. 5 and 6, the experimentally achievable concentration profile (curve 3) and 
control (curve 2) found using the algorithm in Eqs. (8) and (9) are shown. 

Thus, the analysis allows the type of control ensuring the required cementation structure 
of the samples to be effectively predicted. 

5. Without significant change, the given algorithm may be extended to the problem of 
controlling the temperature field in dynamic conditions. However, the final result of the 
thermal process - the creation of a near-uniform temperature field - is more interesting. 
The corresponding problem is solved using the given algorithm. 

In this case, the whole formulation is changed. With specified tolerance on the non- 
uniformity 6, it is required to choose the controlling potential w(t) so that the given re- 
sult is obtained in minimal time. The mathematical formulation of the problem in variational 
form is 

= inf t (=), (i0) 
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where t(w) is implicitly specified by the condition p~(t) (Aw, $) = 6 at specified 6 ~nd 
constant temperature level ~, under the condition that w~W, a compact specified in advance. 

For the limiting case ~(u) = ~, a similar problem which will not be discussed in ietail 
here was solved in [6]. 
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APPLICATION OF ITERATIVE REGULARIZATION FOR THE 

SOLUTION OF INCORRECT INVERSE PROBLEMS 

O. M. Alifanov and S. V. R~yantsev UDC 536.24 

The solution of inverse heat-conduction problems using regularizing gradient 
algorithms is considered. 

Many structures in various engineering fields operate in conditions of intensive and 
often extremal thermal treatment. The general trend is associated with increase in th~ num- 
ber of thermally loaded engineering objects and with increasingly rigorous conditions ~f 
thermal loading, with simultaneous increase in reliability and working life and decrease in 
volume of the material. Questions regarding the maintenance of thermal conditions also oc- 
cupy an important position in the design and development of technological processes associ- 
ated with the heating and cooling of materials, for example, in the continuous casting of 
steel, various methods of heat treatment of metals, glass production, foundry processes, 
growing high-temperature single crystals from melt, etc. 
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